Dosing efficiency and particle-size characteristics of pressurized metered-dose inhaler aerosols in narrow catheters.
نویسندگان
چکیده
An experimental in vitro model was used to determine the effects of intraluminal catheter diameter and length on the delivered dose and particle-size characteristics of salbutamol (albuterol) aerosol delivered by metered dose inhaler (MDI) (Ventolin, 100 micrograms per puff). The dose of aerosolized drug that exited a 16-cm-long tracheal tube with an inner diameter (ID) of 6 mm was compared with that from 4 catheters of differing diameters and lengths that were inserted individually into the tracheal tube. The salbutamol MDI canister was actuated ten times into each delivery system, and the effluent aerosol was trapped onto a filter. The filtrate was dissolved in methanol, and the salbutamol concentration was determined using high-performance liquid chromatography. For the 3 22-cm-long catheters, the delivered dose (mean +/- SD) of salbutamol per actuation for the 22-standard wire gauge (SWG) catheter was 97.5 +/- 3.9 micrograms, which was similar to that for the 19-SWG catheter (102.3 +/- 2.5 micrograms) but was significantly less than that for the 14-SWG catheter (108.2 +/- 4.2 micrograms) (p < 0.05). These delivered doses exceeded those of the 6.0-mm-ID tracheal tube alone (2.33 +/- 0.76 micrograms) and the 13-cm-long 19-SWG catheter (2.17 +/- 0.29 micrograms) (p < 0.001). In a second experiment using a cascade impactor, the distribution of aerosol particle diameters that exited the 6-mm-ID tracheal tube was compared with that exiting a 13-cm-long 19-SWG catheter that extended halfway down the tracheal tube and with that exiting a 22-cm-long 19-SWG catheter inserted into the distal end of the 6-mm-ID tracheal tube. The mass median aerodynamic diameter (mean +/- SD) of the salbutamol aerosols delivered through both the 6.0-mm-ID tracheal tube (1.1 +/- 0.1 microns) and that of the 13-cm-long 19-SWG catheter (1.2 +/- 0.2 microns) were significantly less than that delivered through the 22-cm-long 19-SWG catheter (2.0 +/- 0.1 microns) (p < 0.05). The authors conclude that delivery of respirable aerosol can occur through narrow catheters that function as extended nozzles for MDIs. Optimal dosing will be obtained when the catheter extends the full length of the tracheal tube.
منابع مشابه
Characteristics influencing the effective administration of drugs as inhalation aerosols.
S tudies of the effective delivery of pharmaceutical inhalation aerosols have hinged on their particlesize characteristics and the mass, or dose, of drug delivered to the lung. Preparation and delivery of aerosols have been approached using these criteria with the intention of optimizing lung deposition. Aerosol particles and droplets exhibit a range of sizes which constitute their distribution...
متن کاملDevelopment of Respimat® Soft Mist™ Inhaler and its clinical utility in respiratory disorders
The Respimat(®) Soft Mist™ Inhaler (SMI) (Boehringer Ingelheim International GmbH, Ingelheim, Germany) was developed in response to the need for a pocket-sized device that can generate a single-breath, inhalable aerosol from a drug solution using a patient-independent, reproducible, and environmentally friendly energy supply. This paper describes the design and evolution of this innovative devi...
متن کاملHigher lung deposition with Respimat® Soft Mist™ Inhaler than HFA-MDI in COPD patients with poor technique
Aerosols delivered by Respimat Soft Mist Inhaler (SMI) are slower-moving and longer-lasting than those from pressurized metered-dose inhalers (pMDIs), improving the efficiency of pulmonary drug delivery to patients. In this four-way cross-over study, adults with chronic obstructive pulmonary disease (COPD) and with poor pMDI technique received radiolabelled Berodual (fenoterol hydrobromide 50 m...
متن کاملComputational analyses of a pressurized metered dose inhaler and a new drug-aerosol targeting methodology.
The popular pressurized metered dose inhaler (pMDI), especially for asthma treatment, has undergone various changes in terms of propellant use and valve design. Most significant are the choice of hydrofluoroalkane-134a (HFA-134a) as a new propellant (rather than chlorofluorocarbon, CFC), a smaller exit nozzle diameter and attachment of a spacer in order to reduce ultimately droplet size and spr...
متن کاملInhalation therapy with metered-dose inhalers and dry powder inhalers in mechanically ventilated patients.
Pressurized metered-dose inhalers (pMDIs) are commonly employed for administering bronchodilator aerosols to mechanically ventilated patients. Although it is feasible to employ dry powder inhalers in ventilator circuits, the presence of humidity in the ventilator circuit could reduce their efficiency. A complex array of factors influence drug delivery from pMDIs during mechanical ventilation, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chest
دوره 103 3 شماره
صفحات -
تاریخ انتشار 1993